StomatologyEduJournal1-2015 | Page 17

GLASSIONOMER CEMENT FOR PERMANENT DENTAL RESTORATIONS: A 48-MONTHS, MULTI-CENTRE, PROSPECTIVE CLINICAL TRIAL Moreover, it is not easy to apply the dam in children due to the shape of deciduous dental elements or elements sometimes only partially erupted, despite the existence of speciallyshaped hooks. In these situations the use of GICs may be of particular interest since nowadays the placement of the dental dam during GICs restoration procedures is considered at risk of leading to material over dry and consequently weaker restorations. Our data do not support any significant influence of dental dam positioning on the success or failure of the GICs restorations, even if it is likely that the limited number of failures at 48 months affected the significance of this analysis. However, it is not fully identified in literature to date which may be the influence of dental dam positioning on the placement of GIC restorations and its role on the long-term survival of the restorations. Regarding the high-viscosity glassionomer cements, the formulation chosen in this study is that of pre-dosed capsules, to be applied after agitation in a special electric mixer and through the use of an applicator. The predosed capsules help avoid errors in mixing and improper calibration of the proportions between the two components (usually powder and liquid), to be mixed as in the majority of GICs products. In fact, incorrect mixing could affect the mechanical properties of the product, and, for a clinical trial, it could introduce an important bias for final evaluation. The light-curable coating employed is able to infiltrate the surface and the margins of the restoration, and is therefore useful in overcoming the limits of resistance to abrasion and marginal cracks occurrence of older GIC systems. The aim of the coating agent is to form a resin layer, with an average thickness of 35-40 micrometres, which seals and protects both the areas of restoration and the adhesive interface between the restoration and tooth structure. This is particularly valuable because a discrete frequency of dentine hypersensitivity is normally reported while using composite resins to replace the amalgams. The absence of hypersensitivit y recorded in this study by the patients’ questionnaires may be related to fluoride release and to the absence of any conditioning treatment before the placement of the glassionomer cement. According to the manufacturer’s indications and to the protocol of this study, polyacrylic acid or other kind of dentin conditioning systems were not applied on cavity walls before applying the cement. In this clinical trial, the absence of conditioning seemed not to affect the adhesion and the strength of the link of glassionomer cement with enamel and dentin: even if it is likely that a conditioning phase may improve the adhesion of glassionomers to tooth structures, the adhesion achievable through a control of STOMA.EDUJ (2015) 2 (1) cavity preparation, of rinsing procedures and the use of a modern GIC system may obtain an adhesive interface with adequate strength and resistance. The need of using conditioners with modern high-viscosity glassionomer cements, however has still to be investigated. Regarding their use, modern glassionomer cements can be applied in one step, without layering technique. The estimated time to complete the restoration with the tested GIC is about 3-5 minutes after tooth preparation. Less recent and some of conventional glassionomer cements sometimes require more than 5 minutes (1,11,13). If we consider the mechanical properties of coated glassionomer cements, infiltration into the surface of GICs and dispersion of nano-filler particles contained in resin coating ensure lasting protection and integrity of margins, increasing both the strength and wear resistance (27,28). In fact, they fill the porosities which inevitably forms on GICs surfaces due to the nature of the material. The fluid coating agent creates a regular surface and allows protection of the margins, equal distribution of mechanical load, and protection during the phases of complete maturation of glassionomers: the typical time for reaching final hardness is 6-7 days. The final treatment with coating resins managed to transform the surface of the restoration into a glossy layer, without further polishing. In terms of aesthetics, the modern glassionomer cements are able to stand superior optical properties when compared to conventional glassionomer cements. The translucency and aesthetic appearance could in fact be connected with application of the nanofilled resin coat. Nevertheless, the questionnaire revealed that especially dentists were much less satisfied than patients about the color matching with tooth structures of the restorations. The low rate of color matching can depend on dentist’s choice at the time of restoration, but also on the optical properties of GICs, still not at the same performance as resin-based composites. The lower rate of color matching in the dentists’ questionnaire probably depends on the higher competence and criticism level shown by dental professionals when confronted to patients. Regarding the restoration evaluation system, the criteria first described by Frencken et al. in 1996 were used (14). These criteria have been especially developed to assess GIC restorations, taking into account the material characteristics, as previously discussed, and the issues these materials have raised during the past decades. In this sense, these criteria have been preferred to the USPHS criteria described by Ryge in 1973 (29). USPHS criteria ca n a ssess a d d itiona l information respect to Frencken’s criteria, however they have been 17