StomatologyEduJ 5(1) SEJ_5_1 | Page 24

TOUGHNESS MEASUREMENT IN DIRECT RESIN COMPOSITES USING QUANTITATIVE FRACTOGRAPHIC ANALYSIS an easy method to obtain values for elastic moduli measurements in resin composites. 5. Conclusions Quantitative fractographic analysis offers a different method to evaluate the toughness of direct resin composites. The advantage of this technique is that it occurs with the strength measurements. No additional testing is necessary. The other advantage of this technique to measure fracture toughness is that the flaws causing failure are of the size expected with the handling and finishing procedure used in clinical practice. More research is needed using the quantitative fractographic technique with resin composites to determine the effect of particle size and volume fraction as well as manufacturing techniques on the mechanical properties. The Knoop hardness technique to measure the elastic modulus offers a relatively easy technique to use for resin composites. References 3. 4. 5. 6. 7. 8. 22 11. 12. 13. 14. 15. 16. 18. Acknowledgments The authors thank Dr. Nancy Ruzycki at the University of Florida for use of the SEM during the investigation and Mr. Jack Wannamaker for hardness measurements. We also want to thank and acknowledge Ivoclar Vivadent for providing the raw materials used in this study. 2. 10. 17. Author contributions Equal contribution to the paper. 1. 9. Van Noort R. Introduction to dental materials. 4th ed. Edinburgh, UK: Mosby Elsevier; 2013. Google Scholar (751) Visuttiwattanakorn P, Suputtamongkol K, Angkoonsit D, Kaewthong S, Charoonanan P. Microtensile bond strength of repaired indirect resin composite. J Adv Prosthodont. 2017;9(1):38-44. doi: 10.4047/jap.2017.9.1.38. [Full text links] [Free PMC Article] [PubMed] Google Scholar (0) Scopus (0) Chung SM, Yap AU, Koh WK, Tsai KT, Lim CT. Measurement of Poisson's ratio of dental composite restorative materials. Biomaterials. 2004;25(13):2455-2460. [Full text links] [PubMed] Google Scholar (95) Scopus (48) Baudin C, Osorio R, Toledano M, de Aza S. Work of fracture of a composite resin: fracture-toughening mechanisms. J Biomed Mater Res A. 2009;89(3):751-758. doi: 10.1002/jbm.a.32016.758. [Full text links] [PubMed] Google Scholar (14) Scopus (9) Brunthaler A, König F, Lucas T, Sperr W, Schedle A. Longevity of direct resin composite restorations in posterior teeth: a review. Clin Oral Investig. 2003;7(2):63-7 0. doi: 10.1007/s00784-003- 0206-7. [Full text links] [PubMed] Google Scholar (306) Scopus (183) Van Nieuwenhuysen J, D'Hoore W, Carvalho J, Qvist V. Long- term evaluation of extensive restorations in permanent teeth. J Dent. 2003;31(6):395-405. [Full text links] [PubMed] Google Scholar (283) Scopus (173) Fujishima A, Ferracane JL. Comparison of four modes of fracture toughness testing for dental composites. Dent Mater. 1996;12(1):38-43. doi: 10.1016/S0109-5641(96)80062-5. [Full text links] [PubMed] Google Scholar (83) Scopus (49) Qin Q, Ye J. Toughening mechanisms in composite materials. Cambridge, UK: Woodhead Publishing; 2015. 19. 20. 21. 22. 23. 24. 25. 26. 27. 28. Google Scholar (9) Fujishima A, Miyazaki T, Takatama M, Suzuki E, Miyaji T. [Durability of composite resins in accelerated boiling water immersion]. Shika Zairyo Kikai. 1988;7(5):807-816. Japanese. [PubMed] Google Scholar (3) Scopus (1) Ferry JD. Viscoelastic properties of polymers, 3rd ed. New York, NY: John Wiley & Sons, Inc.; 1980. Google Scholar (21628) He X, Zhou Y, Jia D, Guo Y. Effect of sintering additives on microstructures and mechanical properties of short-carbon- fiber-reinforced SiC composites prepared by precursor pyrolysis–hot pressing. Ceram Int. 2006;32(8):929-934. doi: 10.1016/j.ceramint.2005.07.007. Google Scholar (27) Scopus (22) Xia Z, Curtin WA, Sheldon BW. A new method to evaluate the fracture toughness of thin films. Acta Mater. 2004;52(12):3507- 3517.doi: 10.1016/j.actamat.2004.04.004. Google Scholar (71) Scopus (51) Freiman SW, Mecholsky Jr JJ. The fracture of brittle materials. Hoboken, NJ: John Wiley & Sons; 2012. ASTM C 1421-16. Standard test method for the determination of fracture toughness of advanced ceramics. West Conshohocken. PA: ASTM International; 2016. Quinn G. Fractography of Ceramics and Glasses. A NIST Recommended Practice Guide. Washington, DC: National Institute of Standards and Technology; 2007. Quinn JB, Quinn GD. Material properties and fractography of an indirect dental resin composite. Dent Mater. 2010;26(6):589-599. doi: 10.1016/j.dental.2010.02.008. [Full text links] [Free PMC Article] [PubMed] Google Scholar (49) Scopus (36) Lendenmann U, Wanner M. Tetric EvoCeram / Tetric EvoFlow. Scientific Documentation. R&D, Schaan, Liechtenstein: Ivoclar Vivadent; 2011 p. 10. ASTM C1239 – 13. Standard practice for reporting uniaxial strength data and estimating Weibull distribution parameters for advanced ceramics. West Conshohocken, PA: ASTM International; 2008. Newman Jr JC, Raju IS. An empirical stress-intensity factor equation for the surface crack. Eng Fract Mech. 1981;15(1- 2):185-192. doi: 10.1111/j.1151-2916.1982.tb10357.x. Google Scholar (1962) Scopus (1355) ASTM E384-17. Standard test method for microindentation of materials. West Conshohocken, PA: ASTM International; 2008. Marshall DB, Noma T, Evans AG. A simple method for determining elastic-modulus-to-hardness ratios using Knoop indentation measurements. J Am Ceram Soc. 1982;65(10):c175-c176. Google Scholar (493) Conway Jr JC. Determination of hardness to elastic modulus ratios using Knoop indentation measurements and a model based on loading and reloading half-cycles. J Mater Sci. 1986;21(7):2525-2527. Google Scholar (14) Scopus (11) Davis DM, Waters NE. Fractography of a bis-GMA resin. J Dent Res. 1989;68(7):1194-1198. doi: 10.1177/00220345890680071001. [Full text links] [PubMed] Google Scholar (6) Scopus (4) Cho SD, Bulpakdi P, Matis BA, Platt JA. Effect of bleaching on fracture toughness of resin composites. Oper Dent. 2009;34(6):703-708. doi: 10.2341/08-120-L. [Full text links] [PubMed] Google Scholar (17) Scopus (7) Ferracane JL, Condon JR. Post-cure heat treatments for composites: properties and fractography. Dent Mater. 1992;8(5):290-295. [Full text links] [PubMed] Google Scholar (242) Scopus (159) Pick B, Meira JB, Driemeier L, Braga RR. A critical view on biaxial and short-beam uniaxial flexural strength tests applied to resin composites using Weibull, fractographic and finite element analyses. Dent Mater. 2010;26(1):83-90. doi: 10.1016/j. dental.2009.09.002 [Full text links] [PubMed] Google Scholar (40) Scopus (21) Ruse N. Fracture mechanics characterization of dental biomaterials. In: Curtis RV, Watson TF, editors. Dental Biomaterials: Imaging, Testing and Modeling. 1st ed. Cambridge, UK: Woodhead Publishing; 2008. Google Scholar (6) Ilie N, Hilton TJ, Heintze SD, et al. Academy of Dental Materials guidance-Resin composites: Part I-Mechanical properties. Dent Mater. 2017;33(8):880-894. doi: 10.1016/j.dental.2017.04.013. Review. [Full text links] [PubMed] Google Scholar (4) Stoma Edu J. 2018;5(1): 18-23 http://www.stomaeduj.com