RocketSTEM Issue #9 - October 2014 | Page 76

of at least five to fly. The vehicle will launch from Cape Canaveral Air Force Station, just a few miles from its processing facility, and will cruise autonomously on a six to eight hour trip to the $100 billion orbiting ISS. The astronauts will not need to fly the vehicle themselves at all, and will literally be along for the ride in all aspects of the flight. They will, however, be able to take manual control of the CST-100 at any time, just in case. “We have a basic level of training we provide that will give the operator, a pilot, the knowledge that they need to operate the spaceship, which is mostly autonomous,” added Ferguson. “They will have the ability to get to the ISS and back, as well as the ability to deal with failures and the ability to take manual control if necessary. NASA wants a single piloted vehicle, so we will train the pilot to whatever level of proficiency they need, and if NASA wants us to train someone else to a pilot level of proficiency then we will be happy to do that. That being said we have factored into our design the ability for a copilot, and train them perhaps to the same level of proficiency as the pilot. They would sit beside the pilot and do all of those types of crew resource management (CRM) types of things that NASA instilled in us shuttle astronauts over the years.” “When astronauts go up in the CST-100 their primary mission is not to fly the spacecraft, their primary mission is to go to the space station for 6 months, so we don’t want to burden them with an inordinate amount of training to fly our vehicle,” added Ferguson. The spacecraft interior is much more user-friendly than vehicles that came before, no more hundreds (if not thousands) of switches on nearly every wall; CST-100’s control panel spans not more than three feet wide. Its look and feel is very user-focused, featuring therapeutic Boeing LED Sky Lighting technology similar to that found in the company’s 787 Dreamliner. A blue hue creates a sky effect and makes the capsule appear and feel roomier, something any astronaut will agree is always desired (spaceflight is not for the claustrophobic). The interior also boasts tablet technology for crew interfaces, which completely eliminates any need for bulky manuals, while wireless internet will support communications and ISS docking operations. “One of the great things with the technology we have at Boeing is the ability to rapid prototype the interior, and as designs get updated we’re able to 74 74 bring in new design concepts,” said Castilleja while we sat together onboard his CST-100 mock up last June at Boeing’s CST-100 processing facility at KSC. “We get the engineers in here and get the astronauts in here every six months to provide that reach and visibility. Do they feel comfortable? Is there anything we need to tweak as we move forward? It really builds trust with them. It’s almost like buying a car, but you’re a part of the design process in that vehicle.” “We brought our commercial airliner feel into the CST-100, and so you see this merging … it’s almost like history repeating itself, from commercial airlines to commercial spaceflight,” added Castilleja. “We’re bringing that Boeing element into spaceflight and wanted to create an interior that makes the spacecraft feel a little bit bigger.” An artist’s rendering of the processing facility for the Boeing CST-100 being constructed at Kennedy Space Center. Credit: Boeing Now that Boeing has secured their award with NASA, operations will immediately move to the Kennedy Space Center (KSC) to manufacture, assemble, and test the actual CST-100 flight articles. Boeing, in partnership with Space Florida, is already leasing the former space shuttle Orbiter Processing Facility Bay-3 at KSC to do this, modernizing the facility (now known as the Commercial Crew and Cargo Processing Facility, or C3PF for short) to provide an environment for efficient production, testing, and operations for the CST-100 similar to Boeing’s satellite, space launch vehicle, and commercial airplane production programs. “We’re transitioning this facility into a world class manufacturing facility,” said Mulholland. “With a 50,000 square foot processing facility it’s going to allow us to process up to six CST-100’s at a time.” The hangar facility has more than enough room to support processing of multiple CST-100s simultaneously, and the adjoining sections of the building are well-suited to process other systems such as engines and thrusters before they are integrated into the main spacecraft. www.RocketSTEM .org