RocketSTEM Issue #9 - October 2014 | Page 61

A fiberglass-phenolic honeycomb structure is installed on the skin, which holds 320,000 cells filled with Avcoat—a specific ablative heat shield material that will wear away as it heats up during Orion’s violent 4-mile-per-second re-entry through Earth’s atmosphere. The Avcoat will prevent heat from being transferred to the rest of the capsule, thus helping the spacecraft to survive its intense fall and splashdown in the Pacific Ocean. One of the lesser known tests for the upcoming EFT-1 flight will demonstrate Orion’s ability to operate after sustaining damage from a micrometeoroid hit, a very real threat to crews on any future deep space missions. Two of Orion’s 970 protective space shuttle thermal tiles, which make up the space capsule’s cone-shaped back shell, have holes in them to mimic damage from a micrometeoroid hit. Sensors on the vehicle will record how high temperatures climb inside the holes during Orion’s return, which will inform future decisions about what kind of damage may warrant a repair in space when Orion flies humans next decade. Currently, the spacecraft is inside the Launch Abort System Facility (LASF) at KSC, where the last piece of its flight hardware was recently installed, the emergency launch abort system (LAS). Orion is already fueled with ammonia and hyperpropellants for its EFT-1 mission as well, and will be transported to nearby Cape Canaveral Air Force Station Space Launch Complex 37B for stacking atop its Delta-IV Heavy rocket around Nov. 10. The enormous ULA Delta-IV Heavy rocket Orion will leave Earth on is now vertical on the launch pad too, having moved there from its nearby Horizontal Integration Facility just a couple weeks ago after ULA’s Delta launch team finished conducting the final horizontal processing of the triple-core booster. The rocket’s upper stage, which will fire after the initial launch to send Orion farther into space than any human spacecraft has gone in four decades, arriv