RocketSTEM Issue #9 - October 2014 | Page 27

possible to get a high elevation shot so you will have to take more video to compensate. Exposing the image Exposure for the video can be a little tricky. With capturing the Moon it is a little easier as there is more of the moon in the frame than dark sky, but with planets the majority of the image will be dark sky. The trick here is to lower the exposure control and possibly raise the gain until the detail of the planet is visible. If you are capturing Jupiter then when you have the exposure correct for the planet surface you will find that the Jovian moons have disappeared. This is because to correctly expose the planet it will underexpose the moons. To overcome this I take two videos: one for the planet; and one for the moons. The video with the moons correctly exposed will leave the planet hugely overexposed. I then process the two images separately and then merge them to create a composite picture with all parts exposed correctly. It can be a good compromise to use a higher gain and a corresponding higher frame rate. This is especially true if the atmosphere is very turbulent during your imaging session. Increasing gain increases the grain and decreases image quality. Increasing frame rates is like shortening the shutter speed on a camera, the faster the frame rate, the less movement is captured. This can be effective for countering atmospheric effects. Capturing the video The video is now ready to be recorded. I normally ensure that I take around 2000 frames. If the atmosphere is particularly unstable then the more frames you take the better. It is easy to drop bad frames, but impossible to get additional ones later. In fact that is a good rule of thumb: Take as many frames as possible. The only thing to watch out for is excessively big files. One final thing to bear in mind, particularly with Jupiter, is that the All set up and ready for a night of lunar imaging. Credit Mike Barrett planets not only move through the sky but also revolve around their axis. This means that you can only really use content from the same video to create an image as features on the planet will have revolved. Conclusion Planetary Imaging is all about compromise. The main factor that affects the quality of the images is the Earth’s atmosphere. Being able to image through as little of the atmosphere as possible and on good stable days will vastly improve the quality of the videos, which in turn will lead to better images. In the next issue the processing of the video into a single image will show how a wobbly and blurred video can generate a stunning final result. 25 www.RocketSTEM .org 25