RocketSTEM Issue #9 - October 2014 | Page 10

View of the Canberra Complex showing the 70m (230 ft.) antenna and the 34m (110 ft.) antennas. Credit: NASA/JPL-Caltech the ailing capsule pulling “whispers from space.” Larger more sensitive antennae were built in the 1970s to support the extending reaches of missions like Pioneer 10 as it imaged Jupiter for the first time. A series of highly efficient 34-meter (112 foot) antennae were constructed in the 1980s bringing communications in the X-band for the first time. With more missions to track and new partnerships with the European Space Agency, the DSN was even busier. DSN’s importance was recognized when the first deep space antenna at Goldstone was named a National Historic Landmark in 1985. The 1990s brought beam wave technology to the network. Signals are routed into a room below ground level with a greater variety of receivers and more security. Today NASA is experimenting with laser communications with the Optical Payload for Lasercomm Science (OPALS), which could enable streaming HD video from Mars. How you can get involved with the Deep Space Network NASA’s Jet Propulsion Laboratory brought mission control to your desktop with Deep Space Network Now (http://eyes.nasa.gov/dsn/). The website brings the status of communications with the spacecraft exploring our solar system. This isn’t a simulation but the same interface on the big screens in NASA/JPL building 230’s Space Flight Operations Facility (a.k.a. JPL Mission Control) with real data updated every 5 seconds. The Goldstone Apple Valley Radio Telescope (GAVRT) allows students to operate a 34 meter (112 foot) radio telescope via the internet from their classroom. They study black holes, planets and help monitor the health of spacecraft throughout the solar system. This is real science and the results go into databases used by astronomers and other scientists around the world. For more information, visit http://www.lewiscenter.org/. 08 08 www.RocketSTEM .org