RocketSTEM Issue #8 - July 2014 | Page 5

Flying a test bed for future landers you give the spacecraft the ability to control its own descent and landing. And that’s what we will be attempting By Lloyd Campbell It’s May 22, 2014, another bright sunny day at Kennedy Space Center in Florida where a shiny four legged vehicle, dubbed Morpheus, stands in a special area at the north end of the Shuttle Landing Facility awaiting the facility where 78 of the 135 Space Shuttle missions landed. At the end of the runway, a special area for takeoff and another for in Florida. Its initial target point in the components, all using lasers as their altimeter, and a Doppler velocimeter. All of these instruments are essential to making a safe autonomous technology to detect anything the landing pad, irrespective of the rocks and everything. “It goes and does a scan and place to land is. We know what that should be. From a test perspective we can make sure it lands in the right landing area is not very forgiving as it has boulders and simulated craters that the lander will have to avoid in order to touchdown in a safe landing spot. And one more thing, nobody is at the controls, the Morpheus Lander is going to attempt to do this autonomously, or all on its own. visit with Morpheus Project Manager Jon Olansen and Morpheus Ops Lead, Ian Young at the project’s home at Johnson Space Center in Morpheus is a reusable, autonomous lander capable of vertical takeoffs and landings. It provides a costtechnologies developed in various NASA laboratories in an integrated Morpheus is designed, developed, and tested by a small team at NASA’s Johnson Space Center. From accomplished in just eight months. Other segments of NASA provide their testing was done at the Stennis Space Center, the Marshall Space Flight Center provided assistance with the lander itself as well engine development, Goddard Space Flight software development, and the Langley Research Center and the Jet Propulsion Laboratory assisted with www.RocketSTEM .org Credit: NASA/Mike Chambers and Chris Chamberland bigger than the size of a basketball, under any lighting conditions. Roback described it as follows, “It’s Doppler lidar measures the vehicle’s altitude and velocity, allowing it to make a precision landing on the surface. And lastly, the highaltitude laser altimeter provides data enabling the vehicle to land in the chosen area. As Morpheus Project Manager Jon place, the instruments themselves be controlling the vehicle and if everything goes as anticipated, they will control the vehicle all the way to the ground and land where it should. can make the vehicle think for itself, and autonomously perform these when we send it to the back side of the Moon, or near some crater, Mars, ever it is that we want to send a craft that you’ll have the capability with 03 03