RocketSTEM Issue #8 - July 2014 | Page 22

Penn State students aim for the Moon By Cameron Corrie Landing a spacecraft on the Moon is an audacious undertaking, one that has only been accomplished by three nations of the world, the United States, Soviet Russia, and most recently, China. However, in December 2015, that will all change as the Pennsylvania State University’s Lunar Lion team will attempt to go to the Moon and win the much sought-after Google Lunar X Prize and earn a place in history as the spacecraft on the Moon. The Lunar Lion team is relatively new to the Google Lunar X Prize intent to go to the Moon just this past year. They join a group of 17 other participating teams from around the world, some of which have been preparing since the inception of the prize back in 2007. Despite the late start, the Lunar Lion team has quickly risen to the challenge, under the leadership of Michael Paul of Penn State’s Applied Research Laboratory. Paul holds the title of Director of Space Systems Initiatives. Prior to his work at Penn State University in 2009, he held a position at Johns Hopkins Applied Physics Laboratory and was the Spacecraft Systems Engineer for NASA’s MESSENGER spacecraft that was sent to study the planet Mercury. In addition, Paul was active in the development of the twin STEREO spacecraft currently observing the Sun. His educational background includes an M.S. in Applied Physics from Johns Hopkins and a B.S. in Aerospace Engineering from the University of Notre Dame. Paul leads a multidisciplinary team of roughly 100 members, spanning almost every imaginable major, from aerospace engineering to theatre. There is a role for anyone who is interested and committed to the project. 20 20 The Lunar Lion spacecraft depicted as it leaves Earth’s orbit. Simplicity is the main factor in Penn State’s approach to winning the Google Lunar X Prize. While many other teams are developing multiple vehicles such as a rover and lander for exploring the Moon, Penn State’s Lunar Lion is the spacecraft, lander, and rover all rolled into one convenient package that will minimize points of failure and reduce weight. To further cut costs, they avoid the creation of new parts and materials wherever possible. Instead, they rely heavily on existing surplus materials and designs that are all tried and true - a technique heavily employed by the big players in space exploration. Fellow competitors are designing their components from the ground up which is a major hindrance in terms of cost and reliability. As of fall 2013, the Penn State Lunar Lion team has completed ‘Phase 0’, which is an entirely studentdeveloped process, that included putting together its rocket testing guidelines and procedures as well as contingency and safety plans. able to begin testing a rudimentary liquid rocket engine, using atmospheric oxygen and methane tests to validate their new testing procedures. With the completion of Phase 0, the team has moved forward to the using a ‘pencil-thruster’ fueled by super cooled liquid oxygen (LOX) as an oxidizer and liquid ethanol (like what’s found in gasoline). Alongside the thruster, the team developed a functioning engine test stand fully integrated with propellant delivery systems and sensors. With the team currently running tests on a regular basis, students are analyzing the effectiveness of these thrusters and even making improvements to the design in order to increase their The pencil thruster was designed and provided to the Lunar Lion team by NASA through Penn State’s Space Act Agreement. This agreement is a formal means of NASA entering into a partnership with an outside entity, such as Pennsylvania State University in order to further the missions of NASA and the missions of their partners. The agreement is a two way street, Penn State will provide NASA with research and development concepts from the mission, and NASA will aid the team by providing consultation with their many scientists and engineers for the duratio