RocketSTEM Issue #10 - February 2015 | Page 61

Rosetta’s measurement of the deuterium-to-hydrogen ratio (D/H) measured in the water vapour around Comet 67P/Churyumov–Gerasimenko. Deuterium is an isotope of hydrogen with an added neutron. The ratio of deuterium to hydrogen in water is a key diagnostic to determining where in the Solar System an object originated and in what proportion asteroids and/or comets contributed to Earth’s oceans. The graph displays the different values of D/H in water observed in various bodies in the Solar System. The data points are grouped by colour as planets and moons (blue), chondritic meteorites from the Asteroid Belt (grey), comets originating from the Oort cloud (purple) and Jupiter family comets (pink). Rosetta’s Jupiter-family comet is highlighted in yellow. The ratio for Earth’s oceans is 1.56 ×10–4 (shown as the blue horizontal line in the upper part of the graph). Credit: ESA/ATG medialab/Rosetta/NavCam/Altwegg form of hydrogen with an additional neutron – that was three times greater than the water here one Earth. “We knew that Rosetta’s in situ analysis of this comet was always going to throw up surprises for the bigger picture of Solar System science, and this outstanding observation certainly adds fuel to the debate about the origin of Earth’s water,” says Matt Taylor, ESA’s Rosetta project scientist. Comets are cosmic time capsules, harboring protoplanetary material left over from the early days of planet formation. These icy bodies form in various regions of the solar system and contain traces of material from where they were forged. However, solar system dynamics does not make comet origins easy to discern. Long-period comets can originate out in far reaches of the solar system in a region known as the Oort Cloud, and typically form in the region around Uranus and Neptune. This area is far enough away from the Sun that water ice would be present. So how do they get to the Oort Cloud? As the outer planets settled into their orbits, gravitational interactions between the planets scattered the comets to the outer solar system. On the other hand, Rosetta’s comet, belonging to the Jupiterfamily of comets, is thought to have formed way out, beyond Neptune, in a region known as the Kuiper Belt. From time to time, the orbits of these comets are disturbed and as they travel through the solar system, they are captured by Jupiter’s massive gravitational pull. Scientists have measured the ratio of deuterium to hydrogen (D/H) in 11 different comets, thought to originate in different regions of the solar system, only the Jupiter-family of comets, like Comet 103P/Hartley 2, was observed to contain the same D/H ratio as the Earth’s oceans. Meteorites within the main asteroid belt between Mars and Jupiter were also studied and determined to be a match to Earth’s oceans. Asteroids and meteorites tend to have significantly lower water content than comets, but could still contribute to the presence of water on Earth. Rosetta’s instrument Rosetta Orbiter Spectrometer for Ion and Neutral Analysis, or ROSINA, determined the D/H ratio of comet 67P is three times higher than that of Earth’s oceans, higher than the Jupiter-family comets, and higher than any Oort cloud comet. “Our finding also rules out the idea that Jupiter-family comets contain solely Earth ocean-like water, and adds weight to models that place more emphasis on asteroids as the main delivery mechanism for Earth’s oceans,” Atlwegg said. Over the coming months, Rosetta will continue to follow along with comet 67P, taking measurements and beaming data back to us on Earth. The operations team will continue to monitor how the comet evolves and behaves as it approaches the Sun. 59 www.RocketSTEM .org 59