RocketSTEM Issue #10 - February 2015 | Page 29

is fantastic!’ This can only help to dispel the habitual myths which surround the funding of space exploration in the public imagination. And of course there are far greater benefits, Dr. Marc Rayman, Chief Engineer and Mission Director as Dr. Rayman at JPL, with Dawn during assembly. Credit: NASA explains: ‘We are lucky to live in a culture in which we have the resources to invest in such projects, just as we do in art. These enrich all of us, help us discover our place in the Universe and open our eyes to new worlds, both literally and figuratively.’ Ion propulsion An important part of the return from the mission is the proving of alternative technologies. The radical choice of propulsion system has been of particular importance in enabling Dawn to achieve its ambitious goals. Visiting and orbiting two different bodies has been made possible thanks to an advanced ion thrust propulsion system, developed by NASA. Dawn’s engines are based on the system used successfully on the Deep Space 1 trial mission for new technologies between October 1998 and December 2001. A simplified view of how the system works is shown in Figure 5 below. For a detailed description of the ion propulsion technology used for the mission, visit http:// www.nasa.gov/centers/glenn/about/fs21grc.html Following its launch on a Delta II from Cape Canaveral on 27th September 2007, Dawn has used three xenon ion thrusters (firing only one at a time) to take it in a long outward spiral from Earth into the main asteroid belt, via a gravity assist from Mars. The spacecraft’s trajectory and timeline are shown in Figure 6. The engines have a specific impulse of 3100s and a thrust of 90 millinewtons (mN), and are capable of acceleration from 0 to 60 mph (97 km/h) in 4 days, firing continuously. While a chemical rocket on a spacecraft might have a thrust of up to 500 newtons (N = kg m s-2), Dawn’s much smaller engine can achieve the same change in trajectory by firing over a much longer period of time, and, above all, using far less fuel. This is particularly significant when planning rendezvous and orbital insertion manoeuvres, which is why Dawn is able to catch up with and orbit two separate bodies. By October of 2014, as Marc Rayman explains in his online journal, the spacecraft had thrusted for 1,737 days (68% of its journey), using only 366kg (808 p