Hazard Risk Resilience Magazine Volume 1 Issue1 | Page 6

INTRO | HIGHLIGHTS | FEATURES | FOCUS | PERSPECTIVES | BIOS Improving ecology of the River Eden © Eden Rivers Trust The Eden Demonstration Test Catchment (EdenDTC) project co-directed by Dr Sim Reaney is monitoring river water quality through ten different stations located throughout the River Eden and its tributaries. Data collected about the water quality of the rivers is available to farmers, local communities and anyone interested in improving river health in the UK or elsewhere in the world. Problems with agricultural pollution arise from fertiliser, livestock manure and soil erosion. Monitoring the River Eden can test measures implemented by farmers and the Environment Agency to reduce diffuse pollution entering the river. Small changes to how farmers manage their land can lead to significant improvements in river water quality, but also help them preserve top soil and reduce nutrient losses. The Eden DTC project is part of a recent framework developed by the European Commission to improve river water quality in the European Union through citizen action. Water quality data of the River Eden is currently available on the Eden DTC’s website: www.edendtc.org.uk How earthquakes build and destroy mountains Earthquakes build mountains through uplift but also erode them by causing landslides, bringing them back down again. Rob Parker’s PhD in IHRR looks at the evolution of hillslope stabilities and how landslide hazards change over time in mountain ranges that experience earthquakes. He is asking one simple question in his research: Do large earthquakes build or destroy mountains? A 7.9 magnitude earthquake in China known as the ‘Wenchuan Earthquake’ triggered over 60,000 landslides in the Longmen Shan Mountains close to the Tibetan Plateau. The earthquake killed close to 80,000 people, leaving a lasting impact on at least 15 million people. A study published in Nature Geoscience by Rob Parker, Dr Alex Densmore, Dr Nick Rosser, Prof Dave Petley and Siobhan Whadcoat, using remote satellite imaging, mapped landslides triggered by the Wenchuan Earthquake and found that an estimated volume of material between 5-15 km3 was moved by landslides. They were also able to measure the height of the Longmen Shan Mountains before and after the earthquake in order to estimate how much material was added. They found that large shallow earthquakes may actually be reducing the volume of mountains, leading to land loss. ‘Mass wasting triggered by the 2008 Wenchuan earthquake greater than orogenic growth’. Nature Geoscience, 4, 449–452 DOI: 10.1038/ngeo1154.