GeminiFocus 2014 Year in Review | Page 33

Figure 10. amples in stellar mass and in high luminosity of the detected gas clumps (Figure 10). The observations were made using the Gemini Mulit-Object Spectrograph Integral Field Units on both Gemini telescopes. Stellar absorption lines and ionized gas emission lines provide kinematic measurements of the stellar and gas components of the galaxies. Both the gas and the stars show smooth rotation and large velocity dispersion. The kinematic similarity of these components suggests a common external origin for turbulence that results in the large velocity dispersion, as opposed to a feedback mechanism whereby stellar processes (including winds and supernovae) act on the gas alone. A preprint is now available and publication is forthcoming in Monthly Notices of the Royal Astronomical Society. B[e] supergiants deposit enriched material in the interstellar medium through mass loss (during post-main-sequence phases) and ultimately as supernovae. The mass loss can result in disks and rings, and the progenitor of  Supernova 1987A in the Large Magellanic Cloud may, in fact, be a B[e] supergiant. Besides increasing the known population of these rare objects, M31 offers an interesting host environment, having higher metallicity (about twice solar) compared with previous examples. False-color images of the galaxies constructed from the Gemini IFU data, with continuum, Hb, and [O III] in red, green, and blue, respectively. The circles show the continuum peaks, which are coincident with the kinematic center in each case. The arrows mark locations of clumps, which are evident as local emission-line peaks. Figure 11. GNIRS continuumsubtracted spectra of two newly identified B[e] supergiants in M31 (black), exhibiting the hydrogen Pfund series and both 12CO and 13CO. The red lines represent model fits to the observations. April 2014 Discovery of the First B[e] Supergiants in M31 Michaela Kraus (Akademie ved Ceske republiky, Czech Republic) and collaborators from Argentina and Brazil have used the Gemini Near-Infrared Spectrograph (GNIRS) on Gemini North to identify the first B[e] supergiants in the nearby galaxy M31. These stars represent a short-lived phase of evolution of massive stars, after their time on the main sequence. These stars are broadly relevant first in the context of stellar evoluti