GeminiFocus 2013 Year in Review | Page 33

evidence of the transition of stars from a cluster to the field. In particular, the authors found that the sub-solar mass population is deficient in Haffner 16, which they suggest results from the cluster’s dynamic evolution, during which it lost protostars of subsolar masses. Haffner 16 contains a large population of pre-main-sequence stars that are still accreting material, demonstrated by their line emission. This is unexpected given Haffner 16’s age — usually the accretion phase ends after only a few Myr. This extended period of mass buildup may eventually result in somewhat overly massive stars for their position on the main sequence. To explain the observations, the authors suggest that the supernovae and strong stellar winds of massive stars that normally disrupt accretion are absent, allowing the process to continue unabated. For astronomers interested in all subjects, these observations most importantly demonstrate the utility of the GeMS AO system even in the relatively poor seeing conditions under which these data were obtained. The delivered image quality here (Figure 6) provides full-width at half-maximum in the Ks band of < 0.16 arcsecond. This represents a significant improvement over the natural seeing, which, on the night these data were obtained, was roughly 0.8 arcsecond — a value worse than average at Gemini South on Cerro Pachón. The paper appears in The Publications of the Astronomical Society of the Pacific. Davidge, T. J., et al., “Haffner 16: A Young Moving Group in the Making.” eprint arXiv:1308.5432. Limits on Quaoar’s Atmosphere The Kuiper Belt Object Quaoar (pronounced Kwa-whar), located well beyond the orbit of Pluto, can be studied through occultations as it passes along the line of sight through the crowed plane of the Milky Way. Occul- tations are an effective probe because astronomers know the speeds of Solar System bodies very precisely from their orbits, so the duration when starlight is blocked provides a direct measurement of the size of the occulting object. In addition, an occultation can uncover information about the nearby body’s atmosphere, if it exists. A rocky body without an atmosphere will immediately extinguish the starlight, while one with an atmosphere will create a “fuzzy” event with a slow dimming and eventual blocking of the starlight. Recent “near-misses” of Quaoar occultations provide some constraints on a possible atmosphere, as Wesley Fraser (National Research Council Herzberg, Canada) and collaborators rule out some pure N2 and CO models. They find that a methane atmosphere is possible, with temperature and pressure values that prevented detectability in the latest observations. Figure 6. This image of Haffner 16 illustrates that the GeMS AO system can successfully sharpen data even under relatively poor imaging conditions. With the correction, the point sources appeared spread by less than 0.16 arcsecond (full-width at half-maximum, in the Ks band). This represents a significant improvement over the natural quality of the sky, which, on the night these data were obtained, was roughly 0.8 arcsecond — a value worse than average at Gemini South on Cerro Pachón. The background stars are relatively faint, and rapid photometry is required, so the acquisition camera on Gemini, normally used to adjust the telescope pointing, became January2014 2013 Year in Review GeminiFocus 31