Flashmag Digizine Edition Issue 110 October 2020 - Page 132

.............132.............

Garcia Martin notes that knowledge of biology is not an absolute prerequisite, if surrounded by the team environment provided by the national labs. Radivojevic, for example, has a doctorate in applied mathematics and no background in biology. “In two years here, she was able to productively collaborate with our multidisciplinary team of biologists, engineers, and computer scientists and make a difference in the synthetic biology field,” he said. “In the traditional ways of doing metabolic engineering, she would have had to spend five or six years just learning the needed biological knowledge before even starting her own independent experiments.”

“The national labs provide the environment where specialization and standardization can prosper and combine in the large multidisciplinary teams that are their hallmark,” Garcia Martin said.

Synthetic biology has the potential to make significant impacts in almost every sector: food, medicine, agriculture, climate, energy, and materials. The global synthetic biology market is currently estimated at around $4 billion and has been forecast to grow to more than $20 billion by 2025, according to various market reports.

“If we could automate metabolic engineering, we could strive for more audacious goals. We could engineer microbiomes for therapeutic or bioremediation purposes. We could engineer microbiomes in our gut to produce drugs to treat autism, for example, or microbiomes in the environment that convert waste to biofuels,” Garcia Martin said. “The combination of machine learning and CRISPR-based gene editing enables much more efficient convergence to desired specifications.”

Julie Chao News Center.lbl.gov 09/25/ 2020

Flashmag September 2020 www.flashmag.net

Flashmag October 2020 www.flashmag.net