DIL State of the Lab - Fall 2015 | Page 4

Berkeley Lab Water Technology “Boomerangs” from Bangladesh to California By Tamara Straus In 2006, when UC Berkeley Civil Engineering Professor Ashok Gadgil began researching the possibility of removing arsenic from drinking water using electrochemistry, he targeted his invention at South Asia, specifically Bangladesh and West Bengal, where more than 60 million people are estimated to be consuming groundwater with dangerously high arsenic levels. Gadgil’s invention, ECAR (short for Electrochemical Arsenic Remediation) has since been tested in his lab and is currently being implemented in the field, thanks to funding from the Lawrence Berkeley National Lab and the Development Impact Lab. Since December 2013, the technology has been under license by the Indian company Luminous Water Technologies, which plans to bring ECAR to arsenic-affected villages throughout India and Bangladesh. Meanwhile, members of the ECAR team, lead by Gadgil and Susan Amrose are conducting a 10,000 liter-per-day trial of the system in preparation for the considerable scaling. For Gadgil and Amrose, these outcomes are the result of years of experimenting, planning, and partnering. One outcome they didn’t necessarily expect, however, is unfolding here in the United States. During the summer of 2013, Amrose and John Pujol launched their own company, SimpleWater, using the same electrochemical arsenic remediation technology developed in Gadgil’s lab but directed at the tens of thousands of wells and rural American water systems with high levels of arsenic. With funding from the U.S. Environmental Protection Agency, SimpleWater successfully validated the technology in California in 2014 and is now preparing a larger scale pilot in Grimes, California. ECAR was also awarded a 2013 UC Proof of Concept Program Commercialization Gap Grant, to see if it could be used to remediate PAGE 4 arsenic-contaminated California. groundwater in This turn of events is a prime example of what business and engineering scholars are calling “reverse” or “boomerang” innovations—whereby products and services developed as inexpensive models to meet the needs of developing nations are then repackaged or remodeled as low-cost alternatives for developed markets. In the case of Grimes, a town of about 550 people 50 miles north of Sacramento, ECAR technology may prove as useful to residents as those in rural Bangladesh—although the regulatory, Sample ECAR set up including steel plates connected to current, enabling robust and reliable removal of arsenic III and IV from drinking water” political, and environmental conditions are quite different. “The water treatment needs of remote, low-income, and small American communities have largely been ignored, because U.S. innovation focuses so much on large municipal systems,” said Amrose. “ECAR technology was designed to be affordable and robust in rural and primarily very low-income South Asian communities, which translated easily to the unmet U.S. needs that SimpleWater is addressing.” One reason that arsenic-contaminated water has been overlooked globally is that it is hard to detect. Arsenic dissolves from soil and rock into drinking water supplies and is tasteless and odorless, but it unquestionably a poison. Over the past few decades, scientists have found increasing evidence that chronic ingestion of arsenic results in lower IQ in children as well as severe maladies, such as lesions, diabetes, cancer, and blood vessel diseases that can lead to gangrene, amputation, and premature death. As a result, in 2001-2002 the World Health Organization and the Environmental Protection Agency set a new drinking water standard prohibiting the consumption of water with more than 10 parts per billion (ppb) of arsenic. Yet arsenic in drinking water has remained an international problem for which longterm solutions have been elusive. As Gadgil told Lawrence Berkeley Lab News in a 2014 article, “A lot of technologies to remove arsenic on the community- and household- scale have been donated. But if you go to these villages it’s like a technology graveyard. One study found that more than 90 percent failed within six months, and then were abandoned to rust in the field.” Among the reasons Gadgil thinks ECAR could prove effective is that the technology has been created to be inexpensive and easy to maintain. Unlike complex chemical processes or maintenance-heavy devices, ECAR works by using electricity to quickly dissolve iron in water. This forms a type of rust that binds to arsenic—and that can then be separated from the water through filtration or settling. ECAR is not meant to serve large populations that are serviced by government water systems. Instead, the technology is designed for residents who can collectively maintain and own a water system. One of the goals of SimpleWater’s ArsenicVolt system is to provide remote monitoring of arsenic levels. This is being done, said CEO Pujol, for a very simple reason: There are few water engineers in the U.S. with expertise in arsenic or other heavy metals—and even fewer who will live in a small town. Indeed, lack of detection of arsenic is one of the biggest problems facing small system U.S. water supplies. According to data