CardioSource WorldNews | Page 30

care innovation. In his new book, The Patient Will See You Now, he describes medicine’s “Gutenberg moment”: just as the printing press liberated knowledge from the control of an elite class; now, digital health technology is poised to do the same for medicine, “democratizing” it in ways that were unimaginable until now. Specifically, smartphones will perform blood tests, medical scans, and even do parts of the physical examination. Need to rethink research? Thinking big requires that you imagine massive, open, online medicine, where diagnostics are done by comparisons of medical profiles (yes, computer-generated diagnoses and recommendations), enabling real-time, real-world research on massive populations. Dr. Topol makes it clear that the path forward will be complicated: the medical establishment will resist these changes, and digitized medicine inevitably raises serious issues surrounding privacy. Nevertheless, the result— techno optimist that he is—will be better, cheaper, and more humane health care. just disappear. According to John A. Rogers, PhD, a professor of materials science and engineering at the University of Illinois at Urbana-Champaign, “This is a new class of electronic biomedical implants [that] have potential across a range of clinical practices, where therapeutic or monitoring devices are implanted or ingested, perform a sophisticated function, and then resorb harmlessly into the body after their function is no longer necessary.”1 How do we get from ideas to innovations like this? Daniel Kraft, MD, Faculty Chair for Medicine at Singularity University and Founding Executive Director of the conference. “Particularly in the health care space [...] technology is just the enabler. It’s really an integration of people, technologies, ideas, synergies, workshops, demos, where we can see not only what’s on the cutting edge today but where things will be in the very near future.” Not content to just present exponential technologies, the conference also addressed how to “There is a shared interest among innovators to find the settings where emergent technologies [in medical practice] can be given a fair and - Dave Chase thorough review.” For example, at the 2013 Exponential Medicine meeting, Dr. Topol introduced attendees to the idea of continual blood surveillance using an injectable nanosensor that can detect a genomic signal from a cell type that starts circulating in the blood during the early minutes of a myocardial infarction. That signal can then be relayed to a smartphone and the patient will receive a “Heart Attack Ringtone.” (While such a ‘call’ from your heart might be a touch stress-inducing itself, maybe it can convince people that what they’re feeling is not last night’s pepperoni pizza back for an encore, encouraging them to dial 911.) Similar technologies could be used to monitor autoantibodies to the Islet cells in the pancreas in children with high genomic risk for developing type 1 diabetes or plasma-detected cancer markers, said Dr. Topol. As he puts it: There are about 400 sensors in the average car today; why shouldn’t we have any in our bodies? Another example: On Jan. 18, 2015, in the journal Nature, investigators reported on the development of tiny brain implants that do a crucial monitoring job after brain injury or surgery, then 28 CardioSource WorldNews introduce and scale new technologies properly so they are accepted and efficacious. “Without fertile ground, exponential technologies will die on the vine,” wrote Forbes contributor Dave Chase, a speaker, entrepreneur, and investor who is considered a top influencer in shaping digital health today. “Historically it has taken 17 years for medical research to flow into regular medical practice,” said Chase. Allowing some of the exponential technologies out there—which he terms health care “bunker busters”—to get bogged down unduly (assuming the science has been proven) would be bad. “Consequently, there is a shared interest among innovators to find the settings where emergent technologies can be given a fair and thorough review.” Why “bunker busters?” Well, because current industries, let’s call them the “incumbents,” have built a $3 trillion fortress “to protect their turf,” said Chase, suggesting that this “under-performing healthcare bunker” is ripe for busting. Minting Clinician Innovators Academic medicine with its traditional tripartite mission of clinical care, biomedical research, and education has and will always generate much of the basic research that provides the foundation for healthcare innovation. However, not all academic medical centers are good trainers or supporters of the new breed of physicians who have been dubbed ‘clinician innovators.’ These newcomers still seek the usual board certifications and want to treat patients and maybe have an academic appointment. The difference lies in their background: some of these doctorsin-training have pre-medical school experience presenting to investors, filing patents, prototyping, or even doing an IPO or two. This innovation generation has a ‘virtual’ advantage, too, in that they come from a “digitally intuitive” generation, unlike their teachers. They arrive on the scene at a propitious time, as tight budgets and the Affordable Care Act of 2010 have compelled academic medical institutions to make their care delivery more efficient and cost effective, an area where high-tech innovations may be just what the doctor’s boss ordered. In a Dec. 2015 “presidentially commissioned” Special Report in the Journal of the American Heart Association, Maulik Majmudar, MD, and colleagues (including the current CEO of the AHA, Nancy Brown, BS) discussed how to foster innovation in academia and the new designation of “clinician innovator.”2 Dr. Majmudar is the Associate Director of the Healthcare Transformation Lab at Massachusetts General Hospital. Dr. Majmudar and colleagues noted that training programs need to invest time and resources to this effort and offer didactic lectures, including lectures by innovators with a proven track record, covering a non-traditional range of topics “as diverse as healthcare economics, health information technology, health policy, quality and outcomes, lean startup methodology, human-centered design, big data, medical writing, intellectual property, innovation and entrepreneurship, as well as leadership and management.” As if that wasn’t enough, these programs also need “collaborative mentorship, action learning electives, and assignment of individual projects that are to be complete and presented by the completion of professional training.” So where are such programs to be found? The Stanford BioDesign program is a leader in this effort, now in its 15th year of training fellows and with dozens of successful startups to its credit. More recently, the Healthcare Transformation Lab at Massachusetts General Hospital launched Co.Create, a program that seeks to “accelerate the translation of early-stage ideas into scalable and sustainable healthcare ventures.” Dr. Majmudar, the first author on the JAHA report, is the Associate Director of the Healthcare Transformation Lab. The spark of innovation can be found igniting in various other settings around the country—and world—as well. While acknowledging the need for academia to February 2016