African Design Magazine ADM #38 March 2018 | Page 42

BIM SIMULATION the total energy consumption has continuously increased. It is considered that the total energy consumption will continuously increase in proportion to the progress of energy efficiency in buildings through the system as demands and expectations for comfort and convenience of buildings increase according to changes in residents’ life patterns and awareness. As shown in Figure 1, apartments account for the largest proportion of the energy consumption, 17.2% in 2015. Commercial buildings and schools account for 15.6% and 13.6%, respectively. In other words, the energy consumption in apartment houses and business facilities showed a continuously increasing trend accounting for 32.9%, and there is a need for a system plan for energy saving of buildings because they account for one third of the overall energy consumption [1]. Conversely, a continuous increase in 42 AFRICAN DESIGN MAGAZINE © energy consumption has raised awareness of the need to develop low-carbon design methods in the field of architecture, and there has been active research on the development of high-performance energy architectural technologies using BIM in the academic world. In particular, the use of BIM has the advantage of integrally operating design, construction, and maintenance of buildings. Therefore, it is expected that the development of construction techniques through energy performance analysis will be highly effective in energy saving. However, with regard to existing design evaluation based on energy performance, analysis and evaluation of energy performance are performed in the intermediate design stage after design and facility system are determined [2]. Thus, there are limitations to the application of the results of energy performance analysis to design: namely, energy performance-based design